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Abstract

This article studies future equity financing in a continuous-time principal-agent setup whereby
career concerns generate moral hazard tension. Our framework admits precise closed-form ex-
pressions. The higher firm value leading up to conversion, the fewer equity investors attain and
the less risk the entrepreneur takes. We implement the contract using a convertible note with
a valuation cap, that if set too high, developing innovation becomes suboptimal. Lastly, we in-
troduce the implied probability of success: a novel measure allowing for risk comparison across
different innovative technologies. We demonstrate its use to empirically estimate investors’ skill
and correct selection bias in realized returns.

1 Introduction

Future equity instruments have become very popular in financing early-stage firms. So much so that

in recent years there has been a competition to standardize future equity agreements. In late 2013,

startup accelerator Y Combinator unveiled its Simple Agreement for Future Equity (“SAFE”)

investment instrument with the stated goal of standardizing the funding terms between early-

stage firms and investors. In mid-2014, another accelerator, 500 Startups, introduced a competing

document, dubbed the Keep It Simple Security (“KISS”). Since then, these documents have become

increasingly popular in financing early-stage ventures.1 However, we know very little about the

implications of future equity financing or the importance of its funding terms. This paper aims to

bridge that gap.

In future equity financing, investors agree to transfer funds today against an undetermined

amount of equity that will be permanently allocated in the future when certain conditions are met.

∗Contact: idan.hodor@monash.edu. We thank Jérôme Detemple, Marcel Rindisbacher, Zhiguo He, Darrel Duffie,
Ilan Kremer, Lyndon Moore, Gabriele Lattanzio, Evgeny Lyandres, Guanming He, and seminar participants at
Monash Business School, FMCG 2021, EFMA 2021*, WFC 2021*.

1In a recent survey, Coyle and Green (2018) find that nearly all U.S. lawyers who specialize in startups signed at
least one SAFE or KISS agreement.



In this paper, we provide a theory that studies these types of deals, and we do so in a continuous-

time principal-agent setup. The continuous-time methodology is instrumental for this study. It

allows us to analyze the repeated tension between exploration and exploitation, the risk-sharing

properties of future equity financing deals, and better understand the importance of its two most

critical provisions: the valuation cap and discount provisions. All of which has yet to be addressed.

The empirical implication section provides a novel tool to compare the risk of different innovative

technologies and empirically analyze investors’ skill and return performance.

Specifically, investors want to invest in a high net present value innovative technology. The devel-

opment of such innovative technology has a long-term and unknown maturity. The entrepreneur—

the person with the skill to develop innovative technology—may avoid the developing time if she

utilizes an already developed off-the-shelf technology instead. The tension between the two tech-

nologies comes from the cost of delaying the breakthrough. When the entrepreneur switches to

utilize off-the-shelf technology, she postpones developing the innovative technology and extends

the time it will eventually take to reach a breakthrough. This formulation is very well suited to

study early-stage innovative projects; it is dynamically tractable and admits precise closed-form

expressions. More importantly, it addresses the repeated, dynamic tension between exploration

and exploitation.

Despite the low rewards from utilizing off-the-shelf technology, shortening the development time

is valuable because it expedites the entrepreneur’s successful future career. Our career concern

agency friction is motivated by Graham, Harvey, and Rajgopal (2005)s’ influential work. Their

work emphasizes the impact of managers’ career concerns on their decision-making and as the

source of agency friction. They find that 78% of the executives in their sample admit to sacrificing

long-term value due to career concerns.

Consistent with Burton, Sørensen, and Dobrev (2016), which view entrepreneurship as a career

step and not as an end goal, we assume that the entrepreneur internalizes the future career benefits

of fast technological deployment. Both developing innovative technology and utilizing off-the-shelf

technology send a positive signal about the entrepreneur’s characteristics. This positive signal

advances the entrepreneur in her future career, and therefore, obtaining an early positive signal is

valuable. It could be in better investment terms to finance her next idea. Alternatively, it could

be in finding a high-paying corporate job.
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Gompers, Kovner, Lerner, and Scharfstein (2010) document a manifestation of this channel.

They find that entrepreneurs with a track record of success are much more likely to gain funding

than first-time entrepreneurs and those who have previously failed. Further, Hall and Woodward

(2010) show that entrepreneurs face a huge non-diversifiable risk and would benefit from selling

some of the value they would obtain in a successful outcome in exchange for more wealth in

the most likely failed outcome, suggesting that reducing the risk and the payoff is a beneficial

strategic decision for entrepreneurs. Overall, empirical evidence suggests that, unlike investors,

the entrepreneur prefers to utilize off-the-shelf technology. The extra career-related payoff creates

a wedge between the entrepreneur and investors’ preferred strategies, and it is the source of the

agency friction in this model.

To fix ideas, unlike off-the-shelf technology, innovative technology takes time to develop. During

the development phase, off-the-shelf technology produces a higher expected cash flow, and because

of career benefits, it is valued more by the entrepreneur. If the entrepreneur develops innovative

technology, it reaches a breakthrough at a random future date. However, because aligning incen-

tives is potentially costly, the contract can be terminated before the breakthrough. Unlike the

development phase, post-development, the innovative technology produces an expected cash flow

high enough to offset the career benefits. From this point on, the agency friction disappears.

We resolve the conflict of interest with a financial contract that ensures the development of

innovative technology all the time. The contract endogenously determines the maximal investors’

equity while still providing sufficient incentives to the entrepreneur to develop the innovative tech-

nology. Since the optimal contract mandates the permanent allocation of equity conditional on

future verifiable events, we coin this contract as a future equity contract.

For example, the entrepreneur can either develop a specialized artificial intelligence algorithm

to tackle the speech recognition problem or, instead, can utilize an already developed picture recog-

nition algorithm for that purpose. Investors prefer the specialized artificial intelligence algorithm

because it has a higher net present value, while the entrepreneur prefers a fast deployment of the off-

the-shelf algorithm, boosting her future career faster. The specialized algorithm pre-breakthrough

net present value is $16M, and the post-breakthrough net present value is $91M. Investors agree

to invest $5M using a future equity contract, and there is no other source of funding. Accounting

for the cost of motivating the entrepreneur to pursue the specialized algorithm, and given a 64%
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likelihood that $5M suffices to reach a breakthrough, firm value is $10.26M, post-investment. As

technology reaches breakthrough, firm value reaches $14M, and investors’ future equity converts

to 44% equity; If the firm value had reached $16M, investors’ future equity would convert to 20%

equity.

We obtain an exact closed-form characterization for the optimal contract, which leads to trans-

parent and clear economic intuitions, and present our results in terms of firm value—an observable

economic quantity.

Unconditional conversion to equity is not an equilibrium outcome. The optimal contract illus-

trates how investors and the entrepreneur share risk efficiently while motivating the entrepreneur to

develop innovative technology all the time. In doing so, it gives rise to three important outcomes.

First, the optimal contract satisfies the main feature of convertible notes: the higher the firm

value leading up to conversion, the fewer equity investors attain. Investors’ maximal value is

interior and attained such that the cost of early termination prior to conversion offsets the benefit

of more equity upon conversion. This result is supported by Ewens, Gorbenko, and Korteweg

(2019)s’ empirical findings, documenting an optimal interior equity split between investors and

entrepreneurs.

Second, we observe that positive pay-performance sensitivity discourages innovation, in line

with Manso (2011)’s central insight and empirical evidence. A standard pay-for-performance con-

tract would motivate the entrepreneur to pursue projects with the highest possible current ex-

pected cash flows. However, developing innovation produces low expected cash flow for some time,

thus not aligning with a standard pay-for-performance scheme. The optimal contract punishes

the entrepreneur for unexpected positive cash flows to prohibit deviations away from developing

innovation.

Third, the optimal contract increases the entrepreneur risk exposure as firm value deteriorates.

Intuitively, when the firm value is low, the entrepreneur takes on more risk as she reaps the benefits

if things go well, but not the costs if things go poorly. Convex compensation, which in this model

arises because the entrepreneur’s future equity is always positive, is one of the leading explanations

for managerial risk-taking, such as the one found by Brown, Harlow, and Starks (1996) in the

mutual fund industry. We purport that entrepreneurs—similar to fund managers—take on more

risk when firm values are low.
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Investors’ indirect utility is a superposition of a hyperbolic absolute risk aversion and a linear

function. We obtain a convex absolute risk aversion in investors’ future equity when the curvature

parameter is less than two. In contrast, we obtain a decreasing absolute risk aversion in investors’

future equity when the curvature parameter is higher than two. This result is in line with a

typical financial investor, as Bitler, Moskowitz, and Vissing-Jørgensen (2005)s’ empirical findings

illustrated.

We implement the optimal contract with a convertible note with the following features. The

note does not carry interest payments and does not have a maturity date. It contains a “valuation

cap” provision that ensures investors’ equity upon conversion cannot be too low and a time-varying

“discount” provision, in which the discount increases with a lower investment. The note converts

to equity under three verifiable conditions: (i) when technology reaches breakthrough, (ii) when

investors’ future equity reaches the valuation cap, (iii) when the firm defaults. Our implementation

illustrates that both the SAFE and KISS instruments are in line with our model prediction.

A higher valuation cap is worse for investors. Although it may be tempting to reduce or

remove the valuation cap during negotiation, our result highlights that it is crucial for developing

innovation. That is, a contract with a valuation cap set too high is not optimal for developing

innovation. We highlight this provision’s importance and conjecture that it is widely used in

convertible, SAFE, and KISS notes. When investors’ future equity reaches the valuation cap,

the contract reaches a first-best absorbing state, and the note converts to equity at the valuation

cap. From this point forward, the contract guarantees that the innovative technology will reach a

breakthrough. If the valuation cap provision was not triggered and the firm is still alive, the note

unpredictably converts to equity when innovative technology reaches a breakthrough.

In addition to future equity, and as long as the convertible note is alive, the optimal contract

mandates that the entrepreneur earns a compensation package for developing innovative technology.

The package has two components—salary and incentives pay. The mixture of the two is state-

dependent, and they counterbalance each other. As firm value grows, incentives pay converts to

salary with a fixed conversion rate. The joint dynamics of the incentives pay and salary reveal the

equilibrium’s workings.

Finally, we introduce the implied probability of success—a novel tool for empirical analysis.

It is hard to determine which innovative technology is a riskier investment opportunity because
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innovative technologies are different in many aspects. For example, would a $2M investment in a

new drug a riskeir investment than a $3M in a new battery design? These two technologies have

different characteristics, and the negotiated future equity terms could also be different. In some

aspects, the first investment may be better, while in others, the second.

The implied probability of success transforms different investment opportunities to the same

zero-one scale. It allows for a risk comparison across different innovative technologies. The implied

probability of success measures the probability that technology reaches a breakthrough, as implied

by the future equity contract and technology characteristics.

We illustrate two testable implications for the implied probability of success. In the first testable

implication, we illustrate how to estimate investors’ skills. Investors are skilled when they pay a

low price for a given ex-ante success rate—when they consistently beat their odds. For example, if

investment sizes are relatively big, probabilities of success approach one, and investors are unskilled

if their realized success rate is below one. In contrast, when investment sizes are relatively small,

probabilities of success approaches zero, and investors are skilled if their realized success rate is

above zero. The implied probability of success is the ex-ante success rate. Therefore, for a portfolio

of investments, skilled investors are investors with a realized success rate that is significantly higher

than the average of the implied probabilities of success associated with those investments. Kaplan

and Schoar (2005)s’ seminal work pointed out that differential venture capital skill is the driving

force behind funds’ performance and persistence. Since then, the literature has fine-tuned the

contribution of the fund’s skill to return performance. The implied probability of success provides

a direct way to measure this skill.

In the second testable implication, we illustrate how to correct investors’ realized returns to ac-

count for selection bias. This bias arises because investors record successful investments more often

than failed ones. If investors record only successful investments, the record occurs with probability

given by the implied probability of success. Therefore, corrected returns can be calculated using

the weighted average of realized returns with weights given by the implied probability of success.

Since Cochrane (2005), the literature has emphasized the need to correct this selection bias to

accurately measure investors’ performance. The implied probability of success addresses this bias

by transforming ex-post, realized returns to ex-ante, unbiased ones.

The paper is organized as follows. Section 2 summarizes the related literature; Section 3 setup
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the economy; Section 4 solves the optimal contract; Section 5 analyzes the optimal contract’s im-

plications; Section 6 implements the contract using a convertible note and a compensation package

comprised of salary and incentives pay; Section 7 characterizes the implied probability of success

and discusses its empirical implications; and lastly, Section 8 concludes and discusses future research

avenues.

2 Related Literature

A recent interesting paper by Manso (2011) addressed a conceptually similar question to ours in a

principal-agent context. The agent may either experiment with an innovative approach or exploit

an already established approach. The main implication of his work is that pay-for-performance

discourages the agent from experimenting with the new innovative approach. He utilizes a ban-

dit problem in which experimentation affects the likelihood of success. That is, experimentation

provides additional information.2

Unlike the experimentation literature, this paper has no learning; probability distributions and

cash flows are known. We assume that going through the current iteration (experimenting) does not

provide information about which iteration to try next. Instead of modelling the learning process,

we model the time it takes to reach a breakthrough. This formulation is very well suited to study

early-stage innovative projects, and, perhaps more importantly, it addresses the repeated, dynamic

tension between exploration and exploitation, which has yet to be addressed in the literature.

Our article builds upon the multi-task agency literature, originated from Holmström and Mil-

grom (1991). Typically, in this literature, exerting effort on one task has a negative externality on

another task. The myopic agency literature has expanded this focus by adding a time dimension.

Specifically, exerting effort to increase today’s output has a negative externality on future output.

Recently, Zhu (2018) showed how an agent’s persistent actions introduce a cliff-like contract that

ties agent compensation today to high consecutive outputs leading up to today when the principal

motivates the long-term action. Our model’s main difference is that in Zhu (2018)’s model, man-

ager actions have a persistent effect on output. Specifically, when an agent shirks today, the output

today and tomorrow are affected. Varas (2018) studied a model of a project creation problem with

2There is a large and active literature on experimentation and learning, such as Bergemann and Hege (2005) and
Halac, Kartik, and Liu (2016).
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persistent effects on the firm’s output.

Another related multi-task agency paper is Hoffmann and Pfeil (2018). In this paper, the agent

either invests and reduces the expected cash flow today—and by doing so creates an opportunity to

increase expected cash flow in the future—or does not invest and expected cash flow stays the same.

Investment is the long-term action, which the principal prefers, but he does not observe whether the

manager invests or steals. The main difference between our models is that in Hoffmann and Pfeil

(2018) model, the technological shock occurs regardless of the manager’s actions, whereas, in our

model, a breakthrough is contingent on the entrepreneur’s actions. Also related are Hellmann and

Thiele (2011), and Hellmann (2007), which study how to motivate innovation in a multi-tasking

agency model.

Our article also contributes to the literature on agency conflict between the entrepreneur

and venture capitalists. To the best of our knowledge, we are the first to formalize an optimal

continuous-time future-equity contract and analyze its dynamics and implications, including the

inverse relation between investors’ future equity and firm value and the necessity of the valuation

cap provision. Further, we develop the implied probability of success and utilize it to estimate

investors’ skills and correct selection bias in reported returns, which provides new empirical pre-

dictions.

Focusing on future equity contracts, in a double moral hazard setup, Casamatta (2003) analyzed

the optimal security design depending on the investment size. She found that if the entrepreneur’s

monetary contribution is relatively low, it is harder to induce her to work. In this case, the venture

capitalist should get convertible bonds or preferred equity, which gives him relatively better remu-

neration in bad states. Further, Cornelli and Yosha (2003) analyzed a window-dressing problem.

The entrepreneur has incentives to manipulate a short-term signal to reduce the probability that

the project will be liquidated, even at the expense of reducing the project’s long-term prospects.

They show that convertible debt can prevent the entrepreneur from manipulating a short-term

signal.

The literature on agency conflict between the entrepreneur and venture capitalists is long and

active. One strand in this literature builds on the value-enhancing capabilities of venture capitalists.

It is based on the presumption that venture capitalists contribute to firm value, for example,

through the definition of strategy and financial policy, the professionalization of their internal
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organization, and the recruitment of key employees. Models in this strand of literature have mainly

built upon a double moral hazard problem and address the extensive use of convertible securities

to finance firms and include Cestone (2014), Hellmann (2006), Repullo and Suarez (2004), Schmidt

(2003), Casamatta (2003) and Marx (1998). Another strand of literature has built upon venture

capitalists’ role as informed investors, which naturally gives rise to stage investing. In every stage,

an investor may acquire information about a project’s quality and decide whether to continue or

abandon it. Admati and Pfleiderer (1994) were the first to address the moral hazard induced by

this channel. They showed that when a venture capitalist has a fixed claim, it prevents strategic

trading and induces optimal-continuation decisions. Later, Bergemann and Hege (1998), Habib

and Johnsen (2000), Cornelli and Yosha (2003), and Desśı (2005) analyzed how financial contracts

elicit information revelation and are useful in discriminating across projects and inducing efficient

continuation or liquidation decisions. Recently, Ewens et al. (2019) employed a dynamic search and

matching model to estimate the split of value between an entrepreneur and an investor. Similar to

our model, they find an internally optimal equity split.

Methodologically, our article is most closely related to Hoffmann and Pfeil (2010) and Biais,

Mariotti, Rochet, and Villeneuve (2010). The former embedded luck shocks in a continuous-time

principal-agent model of DeMarzo and Sannikov (2006) and Biais, Mariotti, Plantin, and Rochet

(2007). The latter analyzes the effects of accident risk, and similar to our model, in their model,

the agent’s actions induce changes in the likelihood of an accident occurring. Both papers use

methodologies found in Sannikov (2008).

3 The Economic Setup

This section aims to develop a simple and tractable contract in a dynamic, continuous-time set-

ting to allow for clear implications. The entrepreneur (agent) requires external capital to develop

technology that investors (principal) contribute.3 The contract endogenously determines the equity

investors attain for their initial investment. Since the optimal contract mandates the permanent

allocation of equity conditional on future events, we coin this contract as a future equity contract.

The entrepreneur privately decides whether to develop innovative technology or to utilize off-

3For clarity, investors are in the plural, and the entrepreneur is in the singular. Throughout this paper, it is always
the same group of investors unless otherwise is stated explicitly.
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the-shelf technology, a decision that can be reevaluated and changed at every instant of time and

no cost.4 For simplicity, there are two technologies: innovative technology produces cash flow

characterized by

dX1
t = (µ+ αNt) dt+ σdZt, (1)

and off-the-shelf technology produces cash flow characterized by

dX0
t = µ0dt+ σdZt, (2)

where µ, α, µ0, σ are strictly positive parameters, and (Zt) is a Brownian motion on the complete

probability space (Ω,F ,P). The parameters µ and µ0 capture the two technologies’ expected cash

flows, while α, referred to as potential, captures the jump in the innovative technology’s expected

cash flow upon reaching a breakthrough. We assume that both technologies have the same cash

flow volatility to focus on the technologies’ expected cash flows first-order effects.

To capture the tradeoff between the two technologies, we impose that

µ+ α > µ0 > µ. (3)

This condition states that the off-the-shelf technology has higher expected cash-flow than the

innovative technology before the breakthrough, but then, after the breakthrough the inequality

flips and the innovative technology has higher expected cash-flow.

The process (Nt) ≡ 1τ≤t captures the breakthrough event, where time τ is exponentially dis-

tributed with intensity ν > 0. Intuitively, τ is the (random) time required to develop innovative

technology consistently, and t measures the amount of time the entrepreneur spends doing so. The

innovative technology materializes only if the entrepreneur develops that technology. Once Nt = 1,

the innovative technology reaches breakthrough, and from that time onward, the expected cash

flow jumps to µ+ α.

For tractability and expositional simplicity, the entrepreneur and investors discount future cash

4Since the optimal strategy is never to switch from developing the innovative technology, we can treat both
technologies’ expected values as net switching costs, as long as switching costs are not verifiable.
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flow at the same rate r.5 Let us denote the entrepreneur’s actions by πt ∈ {0, 1}, for t ≥ 0,

where πt = 1 implies the development of innovative technology. Firm cash flow, therefore, evolves

according to

dXπ
t = [πt (µ+ αNt) + (1− πt)µ0] dt+ σdZt. (4)

The desired “working” action is πt = 1 and is referred to as developing innovation. The undesired

“shirking” action is πt = 0 and is referred to as utilizing off-the-shelf. Investors do not observe

the entrepreneur action πt, but only firm cash flow Xπ
t ; expected cash flow is internal and unob-

servable. We assume that breakthrough, captured by Nt, is observable and contractable, and once

innovative technology reaches breakthrough, investors know right away. Thus, the only source of

asymmetric information is that investors cannot disentangle the entrepreneur’s hidden action πt

from the Brownian component in (4).

In utilizing off-the-shelf technology, the net present value is E
[∫∞

0 e−rsdX0
t

]
= µ0

r , and due to

career benefits of fast technological deployment, the entrepreneur obtains an additional value of λ
r .

In this reduced-form approach, the entrepreneur’s objective function accounts for the effects

of today’s action on her future career; fast technological deployment expedites the entrepreneur

path towards successful career. It could be in better investment terms to financing her next idea

or finding a high-paying corporate job. Our reduced-form approach is motivated by Graham et al.

(2005)s’ influential work. They find that 78% of the executives in their sample admit to sacrificing

long-term value due to career concerns. Further, Gompers et al. (2010) find that entrepreneurs

with a track record of success are much more likely to gain funding than first-time entrepreneurs

and those who have previously failed.

In contrast, in developing innovative technology, the net present value is

E
[∫ ∞

0
e−rsdX1

t

]
=

1

r

(
µ+

αν

r + ν

)
≡ V h

1 . (5)

5See Remark 3 for a further discussion about the entrepreneur’s impatience and justification of this point.

11



Post-development, the net present value of innovative technology equals

µ+ α

r
≡ V h

0 . (6)

The subscripts 0, 1 stand for during and post-development, respectively.

Agency friction arises during the development phase because the entrepreneur prefers to utilize

off-the-shelf technology while investors prefer to develop innovative technology. We conjecture

that the entrepreneur’s future equity is sufficiently low, that the entrepreneur value under off-the-

shelf plus the career benefits are higher than the entrepreneur value under developing innovation:

qtV
h

1 ≤
qtµ0

r + λ
r . That is, we conjecture that qt ≤ q̄, and q̄ is defined as

q̄ ≡ min

{
λ

rV h
1 − µ0

, 1

}
. (7)

Post-development, the agency friction disappears. We conjecture that the entrepreneur’s future

equity, qt, is sufficiently high, that the entrepreneur value under off-the-shelf plus the career benefits

are not higher than the entrepreneur value under developing innovation: qt
µ0

r + λ
r ≤ qtV

h
0 . That is,

we conjecture that
¯
q ≤ qt, and

¯
q is defined as

¯
q ≡ λ

rV h
0 − µ0

. (8)

These two conjectures capture the idea that if the entrepreneur’s future equity is high, her incentives

are aligned with investors, and innovation is developed without incentive provision. Alternatively,

if the entrepreneur’s future equity is low, her incentives are never aligned with investors, and

innovation is never developed. Thus, we conjecture and verify in the optimal contract, Theorem 1,

that indeed qt satisfies

¯
q ≤ qt ≤ q̄. (9)

The entrepreneur internalizes the future career benefits of fast technological deployment. Gom-

pers et al. (2010) find that entrepreneurs with a track record of success are much more likely to

gain funding than first-time entrepreneurs and those who have previously failed. Further, Hall and
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Woodward (2010) show that entrepreneurs face a huge non-diversifiable risk and would benefit from

selling some of the value they would obtain in a successful outcome in exchange for more wealth

in the most likely failed outcome, suggesting that reducing the risk and the payoff is a beneficial

strategic decision for entrepreneurs.

To develop innovation, the contract dynamically allocates future equity to the entrepreneur:

Q ≡ {qt ∈ [0, 1] : 0 ≤ t < T}, an allocation that depends on the whole history of observable firm

cash flow. The time it takes to develop innovation is random and unpredictable. Therefore, the

entrepreneur’s consumption flow at time t is given by qtdX
π
t + λ (1− πt) dt. The endogenous

termination time T is random and can take the value ∞ if the contract never terminates. If

termination is triggered, the entrepreneur has an outside option given by RL ≥ 0. Thus, the total

expected entrepreneur value at t = 0 equals

W0 = Eπ
[∫ T

0
e−rs

{
qsdX

π
s + λ (1− πs) ds

}
+ e−rTRL

]
. (10)

Eπ represents the expectation under the probability measure induced by the entrepreneur’s strategy

π = {πt : 0 ≤ t < T}. L is the firm residual value when termination is triggered, and 0 ≤ R ≤ 1 is

the entrepreneur’s share of the residual value L. On the other hand, investors receive a flow of payoff

at time t equal to (1− qt) (dXπ
t ), and if the contract is terminated they receive a residual value

(1−R)L. We assume it is inefficient to terminate the contract, so L < V h
1 and (1−R)L < (1−q̄)V h

1 .

Liquidation is required and a part of an ex-ante optimal contract because the entrepreneur wealth

is bounded from below. Investors’ total expected payoff, therefore, equals

V0 = Eπ
[∫ T

0
e−rs (1− qs)

{
dXπ

s

}
+ e−rT (1−R)L

]
. (11)

Investors and the entrepreneur commit to a long-term contract {Q, T}. This contract specifies

the entrepreneur’s future equity Q and a termination time T that are both based on the complete

history of observable cash flow {Xπ
t , t ≥ 0} and innovation development {Nt, t ≥ 0}. For a given

contract {Q, T}, the entrepreneur then decides on a feasible strategy π to maximize her value W0.

A strategy π is, therefore, incentive-compatible if it maximizes W0 for a given contract {Q, T}.

An incentive-compatible contract is a triplet {π,Q, T} that induces the entrepreneur to pursue the
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innovation strategy πt = 1 all the time.

To deepen our understanding, we describe the chain of events for any infinitesimal time interval

[t, t + dt] before the breakthrough event. First, the entrepreneur decides on her action πt, and

investors decide on the entrepreneur’s future equity qt. The realization of Nt is then revealed,

which equals one only if the entrepreneur develops innovation, and lastly, investors decide whether

to continue to operate (t < T ) or terminate the firm (t ≥ T ).6

Remark 1 (Alternative Interpretation). One may alternatively interpret the career concern

benefits as a lower cost of effort, in line with the moral hazard literature. Utilizing off-the-shelf

technology requires less effort, and by doing so, the entrepreneur gains the differential cost of effort

between utilizing the off-the-shelf technology and the innovative technology.

4 Optimal Contract

The contracting problem is to find an incentive-compatible contract that maximizes investors’

expected profits (11) subject to delivering the entrepreneur her value (10) while also satisfying the

constraint: Wt ≥ RL, for all 0 ≤ t ≤ T . We consider different devisions of bargaining power between

investors and the entrepreneur, and allow W0 to vary. For instance, if there is a competition between

different investors, the entrepreneur enjoys all the bargaining power and receives the maximal value

for W0 under the optimal contract conditions.

We solve for the optimal contract using backward induction. Initially, we characterize the

optimal contract after the technology reaches breakthrough (Section 4.1), and in a second step,

we derive the optimal contract before the technology reaches breakthrough (Section 4.2). We

assume that incentivizing the entrepreneur to develop innovation all the time is optimal, and verify

its optimality later. We define Wt− ≡ lims↑tWs to capture the entrepreneur value before the

technology reaches a breakthrough. We omit the time subscript t− when it does not confuse.

6Formally, this chain of events is captured by the fact that T is (Xπ, N)-measurable stopping time, Q is predictable
with respect to the filtration generated by (Xπ, N), and πt is predictable with respect to the filtration generated by
(Z,N).
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4.1 Post-development Phase

If the entrepreneur followed the recommended strategy and developed innovation, the firm expected

cash flow jumps from µ to µ+α. Under the alternative strategy of utilizing off-the-shelf, expected

cash flow remains at µ0.

Looking forward, exactly when innovation reaches breakthrough, the agency friction disappears

as the innovative technology generates the highest expected cash flow for both the entrepreneur

and investors. As a result, precisely at that time, investors attain their permanent equity allocation

1− qτ , the entrepreneur attains the residual claim, qτ , and the total surplus becomes V h
0 . Looking

backward, exactly when innovation reaches breakthrough, the entrepreneur value Wt− jumps by δt.

The promise-keeping condition ensures that the entrepreneur’s promised value (Wt−+δt) equals

the expected value (qtV
h

0 ); therefore, investors set qt such that

qtV
h

0 = (Wt− + δt) ,
¯
q ≤ qt ≤ q̄. (12)

The following proposition summarizes our findings.

Proposition 1 (Post-development). Investors choose the entrepreneur’s future equity qt to sat-

isfy the promise-keeping condition such that (12) always holds. Once innovative technology reaches

breakthrough (t = τ), both the entrepreneur value and investors’ value function remain constant

indefinitely; the entrepreneur attains qτV
h

0 , and investors (1− qτ )V h
0 .

4.2 Development Phase

We solve for investors’ value function using the dynamic programming approach. We can adopt

this approach because the intensity of developing innovation is constant and independent of the

entrepreneur’s past actions. Following the dynamic contracting literature, we summarise the state

space using the entrepreneur’s continuation value, which we refer to as the entrepreneur value

throughout the paper. Specifically, the entrepreneur value at time t given that the entrepreneur

develops innovation from time t onward equals

Wt = Et
[∫ T

t
e−r(s−t)qsdX

π
s + e−rTRL

]
. (13)
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Next, we apply the Martingale Representation Theorem and characterize the evolution of the

entrepreneur value. The following proposition summarizes our key findings.

Proposition 2 (Incentive Compatibility). The dynamics of the entrepreneur value can be rep-

resented by

dWt = r(Wt−)dt− qtdXπ
t + βt

(
dXπ

t − µdt
)

+ δt

(
dNt − νdt

)
(14)

for some predictable processes β = {βt : 0 ≤ t ≤ T}, δ = {δt : 0 ≤ t ≤ T} and

q = {qt : 0 ≤ t ≤ T}. Furthermore, the contract is incentive-compatible if and only if

βt (µ0 − µ) ≤ δtν − λ for all t ∈ [0, T ]. (15)

When investors set the cash flow risk exposure to zero (βt = 0) and the benefits of developing

innovation to zero (δt = 0), the entrepreneur remains with a negative exposure to cash flow shocks

−qtdXπ
t because qt ≥ 0. This result is not surprising, as the entrepreneur’s future equity (qt)

represents a claim on all future cash flow. Like an asset with claims on future dividends, a positive

cash flow shock (dividend inflow) reduces the entrepreneur value, while a negative cash flow shock

(dividend outflow) increases it.

Investors set incentives such that the entrepreneur is discouraged from utilizing off-the-shelf

technology. They achieve their goal by setting cash flow risk exposure (βt) to offset what the

entrepreneur would have obtained by switching from developing innovation to utilizing off-the-shelf.

By switching to off-the-shelf, the entrepreneur gains the off-the-shelf expected cash flow (µ0βtdt)

and additional career related benefits (λdt). However, the entrepreneur loses the expected cash

flow obtained by developing innovative technology (−µβtdt) and the expected benefits of developing

innovation (−νδtdt). Overall, the entrepreneur is discouraged from utilizing off-the-shelf technology

when (µ0 − µ)βt + λ− δtν ≤ 0. Unlike the traditional principal-agent setup such as DeMarzo and

Sannikov (2006), in our setup, shirking entails a higher expected cash flow (µ0 > µ), which implies

that investors incentivize the entrepreneur against over-reporting as opposed to under-reporting.

Investors choose the benefits of developing innovation (δt) to set the marginal value of increasing

δt to the marginal cost. On the value side, increasing δt facilitates investors with more control over

exposure to cash flow risk since βt can take higher values and further reduce the entrepreneur’s
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exposure, as (15) illustrates. However, on the cost side, increasing δt also increases qt (12), which

increases the entrepreneur’s exposure to cash flow risk (qtdX
π
t ). There is more cash flow risk to

control, which indirectly reduces investors’ control over the cash flow risk exposure.

Inefficiency arises through the risk of early termination, which occurs when the entrepreneur

value falls to RL. To lower this probability, investors would like to increase βt as much as possible;

by doing so, they shrink the entrepreneur’s overall exposure to cash flow shocks (βt − qt). However,

increasing βt too much violates the incentive compatibility restriction, and thus investors increase

βt just enough for incentive compatibility to bind, a characteristic similar to DeMarzo and Sannikov

(2006).

We denote investors’ value function as V1(W ). We utilize Itô’s Lemma for jump processes

and find that investors’ value function must satisfy the following Hamilton-Jacobi-Bellman (HJB)

equation

rV1(Wt−) = max
qt=

W
t−+δt

V h0

,δt,βt≤ δtν−λµ0−µ

{
(1− qt)µ+ V ′1 (Wt−)

(
rWt− − qtµ− δtν

)

+
1

2
σ2V ′′1 (Wt−) (βt − qt)2 + ν

[
(1− qt)V h

0 − V1(Wt−)

]}
. (16)

Investors choose controls {qt, δt, βt} to maximize their value function, subject to the incentive

compatibility restriction (15), the entrepreneur’s future equity constraint (9), and the promise-

keeping condition at breakthrough, (12). We conjecture and verify in the proof of Theorem 1

that (i) the value function V1(Wt−) is strictly concave for RL ≤ W < q̄V h
1 ; (ii) the incentive

compatibility restriction always binds, βt = δtν−λ
µ0−µ , which also implies that δtν−λ

µ0−µ < qt; (iii) the

range of entrepreneur values [RL, q̄V h
1 ] satisfies our future equity (qt) restriction (9).

By plugging both the incentive compatibility and the promise-keeping conditions into the HJB

and taking the first-order condition with respect to δt, we obtain

δt =
1 + V ′1(Wt−)

V ′′1 (Wt−)

(µ0 − µ)2

σ2

V h
0

(
V h

0 ν + µ
)(

V h
0 ν + µ− µ0

)2 +
λV h

0 +Wt− (µ0 − µ)(
V h

0 ν + µ− µ0

) . (17)

We plug the first-order condition (17) back to the HJB equation and find that investors’ value
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function satisfies the following second-order differential equation:

(r + ν)V1(Wt−) =
(
V h0 −Wt−

)(νV h0 + µ

V h0

)
− 1

2

(µ0 − µ)2

σ2

(
νV h0 + µ

νV h0 + µ− µ0

)2
(1 + V ′1 (Wt−))

2

V ′′1 (Wt−)

−
(
1 + V ′1 (Wt−)

)(νV h0 + µ

V h0

)(
λV h0 +Wt− (µ0 − µ)

νV h0 + µ− µ0

)
+ V ′1 (Wt−)Wt−

(
rV h0 − µ
V h0

)
. (18)

We express this differential equation in closed-form, show that it maximizes investors’ value,

and delivers the value W0 ∈ [RL, q̄V h
1 ] to the entrepreneur. The following theorem summarizes our

key findings.

Theorem 1 (Optimal Contract). For a given entrepreneur value W0 ∈ [RL, q̄V h
1 ], investors’

value function can be expressed in closed-form and equals to

V1(Wt−) =
(
V h

1 −Wt−

)
−
(
V h

1 − L
)( q̄V h

1 −Wt−

q̄V h
1 −RL

) 1
a

, RL ≤Wt− ≤ q̄V h
1 . (19)

The parameter V h
1 denotes the net present value of developing innovation. The curvature parameter

satisfies 0 < a < 1 and is given in (45). The incentive compatibility condition always binds, (15),

the entrepreneur’s future equity restrictions are satisfied, (9), and Wt evolves according to (14).

Investors’ controls are linear functions of Wt− and equal to

δt = V h
0 qt −Wt− , (20)

βt =
Wt−ν + λ

V h
1 ν + λ

q̄

(1− φβ) +
Wt−

V h
1

φβ, (21)

qt =
Wt−ν + λ

V h
1 ν + λ

q̄

(1− φq) +
Wt−

V h
1

φq. (22)

The parameters φq and φβ are given in (52) and (53), respectively.

The optimal contract reveals that starting with W0 ∈ [RL, q̄V h
1 ] the entrepreneur’s future equity,

qt, never goes strictly below
¯
q or strictly above q̄. Clearly, when W0 < RL, the entrepreneur is

better off exercising the outside option and innovation is never developed. More importantly, the

next section reveals that W0 = q̄V h
1 is a first best absorbing state, implying that the entrepreneur

develops the innovative technology without incentives. Thus, it is clearly not in the investors’ best

interest to offer W0 > q̄V h
1 , as the entrepreneur develops the innovative technology for less. In
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the next section we analyze the equilibrium mechanism and derive the optimal contract economic

implications.

5 Implications

We refer to W+V1(W ) as the firm value because the entrepreneur and investors’ joint future equity

is always a hundred percent. Interestingly, as (19) reveals, firm value monotonically increases with

W :

∂ (V1(W ) +W )

∂W
> 0,

¯
q ≤ qt < q̄, (23)

which allows us to present our intuitions and implications in terms of the empirically observable

firm value.

We observe that unconditional conversion to equity is not an equilibrium outcome. It is more

costly to unconditionally convert future equity to equity because it reduces investors’ control over

the entrepreneur’s actions. The optimal contract mandates that future equity will convert to equity

under well-defined verifiable conditions, described at length in the next section. The following

proposition verifies that future equity satisfies the main convertible note feature.

Proposition 3 (Future Equity). The higher the firm value leading up to conversion, the fewer

equity investors attain upon conversion,

∂(1− qt)
∂Wt−

< 0,
¯
q ≤ qt < q̄. (24)

The convertible note feature arises from the economic tradeoff investors face: balancing the

cost early termination prior to conversion and benefits of more equity upon conversion. As firm

value improves, the probability of early termination decreases; however, investors’ future equity,

1 − qt, also decreases. For instance, at the extreme, if qt = 1, investors would not attain any

equity upon conversion — certainly not a desirable outcome. Instead, as firm value deteriorates,

the probability of early termination increases; however, investors’ future equity also increases. For

instance, at the other extreme, if qt = 0, investors would attain all the equity upon conversion

but the contract terminates prior to breakthrough, again, not a desirable outcome. Consequently,
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Figure 1. On the left-hand side, we have investors’ value function, V1(W ), as characterized
in (19). On the right-hand side, we have the controls βt, νδt and qt as linear increasing functions
of W . We observe that as the entrepreneur value deteriorates, the gap between qt and βt widens
and increases the entrepreneur’s overall exposure to cash flow shocks. As the entrepreneur value
improves, the gap shrinks, and qt and βt converge to q̄ and eliminate cash flow shocks’ overall
exposure. Plots are typical. Parameter values are µ0 = 0.18, µ = 0.05, α = 4.5, ν = 0.01, r = 0.05,
σ = 0.8, q̄ = 0.8, q = 0.1135, and L = 0.

investors’ maximal value is interior and attained such that the cost of early termination prior to

conversion offsets the benefit of more equity upon conversion. This result is supported by Ewens

et al. (2019)s’ empirical findings, documenting an optimal interior equity split between investors

and entrepreneurs. Figure 1 illustrates the tradeoff investors face.

Further, we observe that positive pay-performance sensitivity discourages innovation, in line

with Manso (2011)’s central insight and empirical evidence. A standard pay-for-performance con-

tract would motivate the entrepreneur to pursue projects with the highest possible current expected

cash flows. However, by design, developing innovation produces low expected cash flow for some

time, thus not aligning with a standard pay-for-performance scheme. The optimal contract punishes

the entrepreneur for unexpected positive cash flows to prohibit deviations away from developing

innovation. In other words, the contract motivates the entrepreneur to under-report cash flows

until the breakthrough event, implying a negative pay-performance sensitivity.

Proposition 4 (Pay-Performance Sensitivity). The entrepreneur pay-performance sensitivity

is always negative

βt − qt < 0,
¯
q ≤ qt < q̄. (25)

20



The optimal contract illustrates how to reduce the probability of early termination while still

keeping the entrepreneur incentivized. In doing so, the optimal contract mandates that the en-

trepreneur loads on more risk in bad states.

As firm value deteriorates, the probability of early termination increases. In these bad states,

the optimal contract increases investors’ future equity. Doing so reduces the entrepreneur’s benefits

from developing innovation, as δt decreases with qt (12). To keep the entrepreneur motivated, the

optimal contract reduces the cash flow risk exposure βt, (15). The decrease in cash flow risk

exposure is steeper than the decrease in qt, resulting in an overall increase in the entrepreneur’s

exposure to cash flow shocks when firm value is low.

Proposition 5 (Risk-Exposure). The optimal contract increases the entrepreneur’s risk exposure

when firm value is low,

∂ (qt − βt)
∂Wt−

< 0,
¯
q ≤ qt < q̄. (26)

The reduction in cash flow risk exposure is steeper because a one unit reduction in cash flow

risk exposure decreases the benefits of developing innovation (δt) by (µ0 − µ)/ν units, which then

translates to a reduction by (µ0 − µ)/
(
V h

0 ν
)

units in qt. Now, because the value of developing

innovation always integrates to be higher than the value of utilizing off-the-shelf, νV h
0 + µ > µ0,

the decrease in cash flow risk exposure is steeper.

The optimal contract’s tendency to increase the entrepreneur’s risk exposure when firm value

is low is in line with managers’ risk-taking behavior when facing a convex compensation structure.

A convex compensation structure, which in this model arises because firm value is non-negative, is

one of the leading explanations of managerial risk-taking behavior, such as the one found by Brown

et al. (1996) in the mutual fund industry.

The contract closed-form characterization highlights that investors’ indirect utility, V1(W ), is

a superposition of a hyperbolic absolute risk aversion and a linear function. The risk aversion—

curvature parameter 1/a—is endogenously determined. Interestingly, when the curvature param-

eter is below 2, investors’ indirect utility exhibits a state-dependent absolute risk aversion, yet

another manifestation of the tradeoff investors face. When firm value is low, the risk of termination

is high. In order to sustain such a high termination risk, investors’ risk appetite increases. Instead,
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when firm value is high, investors’ future equity may reach its lowest point, 1 − q̄. In order to

sustain this type of risk, investors’ risk appetite also increases. Overall, investors’ risk aversion is

concave with respect to firm value. The inverse relation between investors’ future equity, 1 − qt,

and firm value implies that investors’ risk aversion is convex with respect to their future equity.

In contrast, when the curvature parameter is above 2, investors’ indirect utility exhibits an

increasing absolute risk aversion with respect to firm value, which implies a decreasing absolute risk

aversion with respect to their future equity. This result is in line with Bitler et al. (2005)s’ empirical

findings, and a common assumption for a typical financial investor. The following proposition

summarizes our key findings.

Proposition 6 (Risk Aversion). Investors’ indirect utility exhibits a state dependent absolute risk

aversion, defined in (60).When the curvature parameter is high, 2 ≤ 1/a, absolute risk aversion

decreases with investors’ future equity. When the curvature parameter is low, 2 > 1/a, it decreases

for (1 − qt) ≥ 1 − Q̃ and increases for (1 − qt) < 1 − Q̃, excluding the maximal argument and the

high-boundary points in which the absolute risk aversion is not defined. The parameter 1 − Q̃ is

given in (62).

We rewrite the dynamics of the entrepreneur value, (14), as

dWt = (r + ν)
(
Wt− − qtV h

1

)
dt+ (βt − qt)

(
dXπ

t − µdt
)

+ δtdNt (27)

by plugging δt from (20) and using the identity νV h
0 +µ = (ν + r)V h

1 . This representation illustrates

that as firm value approaches V h
1 , both the dt and dZt terms vanish. The dt vanishes because the

entrepreneur value approaches q̄V h
1 , and the dZt term vanishes because qt and the cash flow risk

exposure, βt, both approach q̄. The benefits of developing innovation, δt, approach q̄
(
V h

0 − V h
1

)
.

Putting it all together, the dynamics of the entrepreneur value becomes

dWt = 0dt+ 0dZt + q̄
(
V h

0 − V h
1

)
dNt,

and the highest entrepreneur value, q̄V h
1 , is the first-best absorbing state. Once the entrepreneur

value reaches q̄V h
1 , the contract permanently allocates q̄ equity to the entrepreneur and never

terminates. Intuitively, when future equity reaches q̄, the entrepreneur value from developing
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innovation equals the value from utilizing off-the-shelf (7). As a result, investors do not benefit

from further increasing the future equity, and thus q̄V h
1 becomes the first-best absorbing state.

When technology reaches a breakthrough, the entrepreneur value jumps to q̄V h
0 , and investors

remain with (1− q̄)V h
0 .

An important question remains. Are there any restrictions on q̄? Investors prefer to reduce q̄ as

much as possible, while the entrepreneur prefers to increase it. A higher q̄ means lower investors’

minimal payoff, (1− q̄)V h
1 . As it turns out, q̄ has an upper bound, and investors’ minimal equity

cannot be too low. If it is too low, developing innovation all the time becomes suboptimal.

Proposition 7 (Optimality). Developing innovation is optimal if and only if

q̄ ≤ Q, (28)

where 0 < Q < 1 is a constant implicitly given in (65). The existence of Q is guaranteed if

innovative technology is valuable enough relative to off-the-shelf technology, as given in (66).

Remark 2 (Equity Rights). The dynamic allocation of future equity does not depend on the

breakthrough event because it is unpredictable. The optimal contract dynamically allocates the future

equity leading up to the breakthrough, and at the breakthrough event, converts the future equity to

equity. The contract decides on the optimal split of future equity based on the whole history of cash

flow.

Remark 3 (Equally Patient Entrepreneur). In the traditional setup such as DeMarzo and

Sannikov (2006), the optimal contract balances the principal’s costs and benefits of backloading

payments to the agent. In their model, backloading is costly because the agent is impatient relative

to the principal. When the agent is equally patient, backloading becomes costless. The principal

finds it optimal to postpone payments indefinitely, and the optimal contract does not exist because

the promise-keeping condition is violated. In contrast, in this model, the optimal contract allows for

an equally patient agent because the tradeoff investors face is not due to backloading payments but

rather due to a shrinking share of their future equity, as Proposition 3 and the pursuing analysis

illustrate. Allowing the entrepreneur to be impatient would not eliminate this tradeoff, but rather

superimpose the costly traditional channel with our new costly channel. We leave this extension
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to future research. He (2009) derived a similar conclusion when firm size evolves according to a

geometric Brownian motion.7

6 Convertible Note Implementation

So far, we have characterized the optimal contract between the entrepreneur and investors. In this

section, we implement the contract using a convertible note with a “valuation cap” provision and

a time-varying “discount” provision, without maturity date or interest payments. Our implemen-

tation illustrates that both SAFE and KISS instruments, variants of convertible notes, align with

our model predictions.

Convertible debt and its recent variants have become very popular in financing early-stage firms,

mostly through seed and first rounds. In late 2013, Y Combinator, one of the leading seed round

ventures, introduced its convertible debt version with a SAFE note instrument. It is similar to

a typical convertible debt except that it does not carry interest payments and does not have a

maturity date. In 2014, in an attempt to standardize the use of convertible notes, 500 Startups,

an early-stage venture fund, introduced KISS, another similar security, which is available in both

a debt version and an equity version. The debt version has a maturity date and fixed interest

payments, while the equity version is similar to a SAFE note.8

Generally, there are two important provisions negotiated in every SAFE and KISS: a valuation

cap provision and a discount provision. The valuation cap provision ensures the minimum equity

investors attain in the future, and the discount provision ensures that investors receive more equity

than their investment otherwise suggests.

For instance, investors agree to invest $5M using a future equity contract, and there is no

other source of funding. Accounting for the cost of motivating the entrepreneur to pursue the

innovative technology, and given a 64% likelihood that $5M suffices to reach a breakthrough,

firm value is $10.26M, post-investment. As technology reaches breakthrough, firm value reaches

7In related work, He (2009) contrasted the optimal contract for two different cases of the agent’s impatience. He
analyzes the optimal contract when firm size evolves according to a geometric Brownian motion. He then shows that
when the agent is equally patient, the optimal contract achieves a first-best absorbing state because a portion of
incentives is costless when firm size is time-varying. While when the agent is impatient, the costless incentives are
superimposed with a mechanism similar to the one analyzed in DeMarzo and Sannikov (2006).

8More information about SAFE can be found at the Y-Combinator webpage:
https://www.ycombinator.com/documents/. More information about KISS can be found at the 500 Startups
webpage original announcement: https://500.co/kiss/
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$14M, and investors’ future equity converts to 44% equity. The contract provides a discount of

roughly (0.44/0.36−1) = 22% since without a discount, investors should attain 5/14 = 36% equity.

Had investors invested $4M instead, the discount would have been more considerable. The note’s

valuation cap ensures that investors’ equity is at least 20%.

The discount is the ratio between investors’ equity under the contract and their equity implicit

in their initial investment:

1− qt
K0/ (V1 (W ) +W )

. (29)

The representation reveals that the discount is bigger for smaller investments. Intuitively, a small

investment is riskier because it implies a higher probability of termination before breakthrough.

The contract compensates investors for riskier investments by providing bigger discounts upon

conversion. For a bigger investment, the discount can become negative, which reflects a premium.

The optimal contract reveals that the higher the firm value leading up to conversion, the fewer

equity investors attain, which means that a higher valuation cap is worse for investors. Increasing

the valuation cap too much or removing it completely is not optimal for developing innovation, as

Proposition 7 reveals.

The note in our implementation carries a “valuation cap” benefit, ensuring investors get at least

1 − q̄ equity, and a “discount” relative to equity implicit in their investment, given by (29). The

note converts to equity under three predetermined conditions: (i) If firm value reaches its bottom

threshold L, the firm defaults, and the note converts to 1 − R shares.9 (ii) If firm value reaches

its top threshold of V h
1 , the valuation cap provision is triggered, and the note converts to 1 − q̄

shares. (iii) Alternatively, when neither valuation cap nor default has been triggered, technology

unpredictably reaches breakthrough. At that time, the note converts to 1 − qτ shares. The note

does not have a maturity date, and until one of these three predetermined conditions is met, the

note is alive.

Note that the convertible note does not depend on the amount of external capital K0 investors

inject. However, the entrepreneur and investors’ initial payoffs depend upon K0 and the parties’

relative bargaining power. In exchange for the convertible note agreement, investors inject K0

9Our default definition is similar to Merton (1974) in which firm value falls to the point that equity holders get
nothing.
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capital into the firm’s bank account, which we assume equals the entrepreneur’s initial value,

W0 = K0. The bank account keeps track of the remaining cash the firm promises to the entrepreneur

after accounting for future equity distributions. That is,

dKt = dXπ
t + dWt − (1− qt) dXπ

t (30)

gives the dynamics of the bank account. In this formulation, we assume that cash inflows are

paid immediately and saved by the entrepreneur. An offsetting outflow of qtdX
π
t is paid to the

entrepreneur, and another offsetting outflow of (1 − qt)dX
π
t is paid to investors, for every dXπ

t

inflow.

Further, to keep the entrepreneur incentivized, and for as long as the convertible note is alive,

the firm pays the entrepreneur a compensation package for developing innovation. The package has

two components: a continuous salary and incentive pay. The mixture of the two is state-dependent,

and they counterbalance each other. Plugging dWt, the bank account balance then becomes

dKt = (r + ν)

(
Kt −

∫ t

0
qsdX

π
s

)
dt− qt

(
(r + ν)

(
V h

1

)
− µ

)
dt+ βt

(
dXπ

t − µdt
)

+ δtdNt. (31)

Proposition 8 (Compensation). The entrepreneur earns a continuous and positive salary of

qt
[
(r + ν)V h

1 − µ
]
, incentive pay of −βt, and her future equity. Incentive pay converts to salary as

firm value increases, with a fixed conversion rate given by (r + ν)V h
1
∂q
∂β . The parameter ∂q

∂β is the

elasticity of qt with respect to βt, which equals

∂q

∂β
=

φq
(
rV h

1 − µ0

)
+ νV h

1

φq
(
rV h

1 − µ0

) νV h0
µ0−µ + νV h

1

> 0. (32)

The bank account balance (31) is bounded from below, and the parameter φq is defined in (52).

The joint dynamics of the incentive pay and salary are attractive and revealing the equilibrium’s

workings. When the firm value is low, the risk of termination is high. To mitigate that risk, in-

vestors convert a portion of the entrepreneur’s salary to incentive pay. Reducing the entrepreneur’s

salary decreases the probability of termination, and increasing the incentives pay, increases the

entrepreneur’s risk exposure. A higher risk exposure increases firm value because the firm value is

bounded from below. The firm pays the entrepreneur −βt ≥ 0 more than her future equity in these
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bad states, reducing the bank account balance after a positive cash flow.

In contrast, as firm value increases, the probability of reaching the valuation cap increases. At

that point, investors are not concerned about termination but rather about a shrinking share of

their future equity. Investors convert the incentive-pay back to salary to increase their future equity

share and mitigate the probability of reaching the valuation cap. Investors reduce the incentive

pay because reaching the valuation cap is better than reaching termination. The costs associated

with a higher risk exposure are more significant than the benefits, resulting in an incentive pay

reduction. The firm pays the entrepreneur −βt ≤ 0 less than her future equity in these good states,

increasing the bank account balance after a positive cash flow.

Investors might consider selling their convertible notes before shares are issued. Potential rea-

sons to do so are a liquidity shock that forces liquidation or a predefined strategy whereby in-

vestors source deals and sell them off. We assume the note’s market price is V1(W ), and the

entrepreneur continues to develop innovation with the new investors. From the investors’ perspec-

tive, K∗0 = arg maxV1(W ) is the optimal investment without considering a liquidity event as it

minimizes the probability of termination and maximizes investors’ future equity. However, if in-

vestors consider a liquidity event, they may consider investing less than K∗0 so that their value is

higher than the initial investment, V1(K0) > K0. By doing so, investors can source the deal and

sell it right away with a positive return. Figure 2 illustrates this idea.10

10Additional equity financing rounds that do not give rise to agency issues and known at time t does not affect our
qualitative results. The innovative technology’s net present value is revised downward to QV h1 , where Q < 1 captures
the amount of equity that remained to be shared between investors and the entrepreneur. The entrepreneur’s future
equity is qtQ, and investors’ is (1− qt)Q.
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Figure 2. Example: Suppose K0 = $3M . On the right graph, salary moves between $125K to
$728K per unit time. The incentive pay is 285% when firm value is low and deleverages to −80%
when firm value is high; incentive pay converts to salary as firm value increases; a 1% decrease in
incentive pay increases salary by 0.17%. On the left graph, investors’ value at the time of investment
is V1(3) = $3.79M > $3M , which implies that investors’ return is roughly 26.5% if sold right at the
time. If instead, investors choose to retain their note until conversion to equity is triggered, they
make $0 if development was unsuccessful (termination) and from $18.2M to $80.7M if development
was successful. Thus, investors return between 6X to roughly 27X times their initial investment.
The parameter values are the same as in Figure 1.

7 The Implied Probability of Success

In this section, we formalize the implied probability of success—a novel tool for empirical analysis.

We then show how to utilize it for two important cases.

It is hard to decide which innovative technology is a riskier investment opportunity because

innovative technologies are different in many aspects. For example, would a $2M investment in

a new drug a riskier investment than a $3M in a new battery design? These two technologies

have different characteristics, such as breakthrough likelihood (ν) and potential (α), among other

aspects. The negotiated future equity terms could also be different, such as different investment

size, valuation cap, and residual value.

The implied probability of success transforms different investment opportunities to the same

zero-one scale. It allows for a risk comparison across different innovative technologies. The implied

probability of success measures the probability that technology reaches a breakthrough, as implied

by the future equity contract and technology characteristics. This section formalizes the implied

probability of success.
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We begin by characterizing the map between the entrepreneur value and the implied probability

of success and show that it is a one-to-one map. We then utilize the implied probability of success

to compare different innovative technologies.

To characterize the implied probability of success, we split all possible trajectories of W into

two mutually exclusive sets: a trajectory of W either ends up hitting RL, and the firm defaults

(T < τ), or technology reaches breakthrough first, and default never occurs (T ≥ τ). We can

split the trajectories because the breakthrough intensity is strictly positive, ν > 0, implying that

technology eventually reaches a breakthrough (τ <∞).

Consider the following thought experiment. Suppose that investors choose their optimal ter-

mination time T to maximize their t = 0 payoff, conditional on either one of the two mutually

exclusive sets just described. What would be the maximal (conditional) payoff?

The answer to this question is straightforward once we realize that investors cannot predict the

time it takes technology to reach a breakthrough. Consider the first event. To ensure that termi-

nation occurs before a breakthrough (τ > T ), investors have to terminate the contract immediately

(T = 0). More precisely, at any T > 0, there exists a positive measure set of trajectories of W that

violates the conditional event (τ > T ). As a result, conditional on termination occurring before

the breakthrough, firm value equals the residual value L. Consider the complementary event. To

ensure that breakthrough occurs before termination (τ ≤ T ), investors never terminate the contract

(T =∞). More precisely, at any finite termination time (T <∞), there exists a positive measure

set of trajectories of W that violates the conditional event (τ ≤ T ). As a result, conditional on the

breakthrough occurring before default, firm value equals the net present value (V h
1 ).

The two conditional firm values are constant and can be represented as the probability of the

conditional event multiplied by the corresponding constant. Thus, we represent the (unconditional)

value function (V1(W )) as a function of the implied probability of success:

V1(W ) +W = Eπ [L1τ>T ] + Eπ
[
V h

1 1τ≤T

]
= LPr [τ > T ] + V h

1 Pr [τ ≤ T ] .

Solving for Pr [τ ≤ T ], plugging V1(W ) from (19), we find that

Pr [τ ≤ T ] (W ) = 1−
(
q̄V h

1 −W
q̄V h

1 −RL

) 1
a

. (33)
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The following proposition formalizes our intuition and summarizes our findings.

Proposition 9 (Implied Probability of Success). For a given entrepreneur value, the implied

probability of success admits a closed-form characterization given in (33). It is a one-to-one map

that increases with firm value, ∂ Pr[τ≤T ](W )
∂W > 0, starts at zero, Pr [τ ≤ T ] (RL) = 0, and ends at

one, Pr [τ ≤ T ] (q̄V h
1 ) = 1. Also, it decreases with the valuation cap and the residual value

∂ Pr [τ ≤ T ] (W )

∂q̄
≤ 0,

∂ Pr [τ ≤ T ] (W )

∂L
≤ 0. (34)

The three items are intuitive. As the entrepreneur value deteriorates, the chance of hitting the

lower threshold increases, and thus the probability that technology reaches breakthrough decreases.

When the entrepreneur value reaches its lowest value, the firm defaults, and the implied probability

of success becomes zero. In contrast, as the entrepreneur value improves, the chance of hitting

the lower threshold decreases, and thus the implied probability of success increases. When the

entrepreneur value reaches its upper bound, the drift and volatility of dWt vanish. The risk of

default completely disappears, and the implied probability of success becomes one. It is now clear

that more significant capital investment is mapped to a higher implied probability of success, and

vice versa.

The contract characteristics affect the implied probability of success. When the residual value

increases, the risk of default increases, reducing the implied probability of success. Further, when

the valuation cap increases, the chances of hitting the upper bound q̄V h
1 decreases, reducing the

implied probability of success.

Both the implied probability of success and investors’ value function contains the same infor-

mation. As such, the implied probability of success summarizes the information investors need

to make an informed decision about investments across different technologies. We illustrate how

intuitive implied probabilities of success are in an example given in Figure 3.
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Figure 3. These two figures capture the implied probability (y-axis) for any given investment size
(x-axis). Investing K0 = 4 in the left graph technology is as risky as investing K0 = 3 in the right
graph technology. Both have an implied probability of success of approximately Pr [τ ≤ T ] ≈ 54%.
The two technologies differ only in the expected cash flow jump size α. In the left figure, α = 4.5,
while in the right figure, α = 3.5. We emphasize that even though α has no direct effect on the
intensity of developing innovation (ν = 0.01), it indirectly affects the implied probability of success
through equilibrium. The rest of the parameter values are the same as in Figure 1.

7.1 Empirical Implications

One of the main contributions of the implied probability of success is that it is empirically easier

to measure. This section illustrates this idea in two central cases. We assume that investment

investors make equals the entrepreneur’s initial value, K0 = W0.

In the first case, we illustrate how to estimate the skill of an individual investor. Investors are

skilled when they pay a low price for a given success rate—when they consistently beat their odds.

The implied probability of success is the priced success rate because it measures the probability

of success for a given investment amount exactly when the deal is signed. Specifically, consider

an investor who made N different investments that materialized in the past. Ex-post, M of those

investments are considered successful, which gives this investor a realized success rate of M/N . At

the time of investment, we back-out firm value from investment size and then infer the implied

probability of success from this past firm value. Therefore, we obtain an estimator for skilled

investors:
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Empirical Implication 1 (Skill). Skilled investors are those with a realized success rate that is

consistently higher than their average of implied success rates,

M

N
>

1

N

N∑
i=1

Pr [τ < T ]i . (35)

The left-hand side is the realized success rate, while the right-hand side is the average success

rate implied by investment size; both the realized and the implied success rates account for failed and

successful investments. For example, if investment sizes are relatively big, probabilities of success

approach one, and investors are considered unskilled if their realized success rate is below one. In

contrast, when investment sizes are relatively small, probabilities of success approaches zero, and

investors are considered skilled if their realized success rate is above zero. Our implied probability

of success creates a new testable implication contributing to the analysis of venture capitalists’

skills. Kaplan and Schoar (2005)s’ seminal work pointed out that differential venture capital skill

is the driving force behind funds’ performance and persistence. Since then, the literature has fine-

tuned the contribution of the fund’s skill to return performance. The implied probability of success

provides a direct way to measure this skill.

In the second case, we illustrate how to correct investors’ realized returns to account for selec-

tion bias. This bias arises because investors record successful investments more often than failed

ones, which implies that their reported realized returns are much higher than their actual returns.

Consider an investor who realized a positive net return R > 0 on a particular investment:

R =
(1− qτ )V h

0 −K0

K0
.

If the investor records only successful investments, the record occurs with probability Pr [τ < T ].

Therefore, we obtain a direct measure to correct realized returns:

Empirical Implication 2 (Selection Bias). The corrected return R̂ is a weighted average of

the realized, reported return, and hundred percent loss. The implied probability of success gives the

weights,

R̂ = R
(

Pr [τ < T ]
)
− 1
(
1− Pr [τ < T ]

)
, (36)
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assuming that L = 0.

The corrected return considers that with probability 1 − Pr [τ < T ], the investor would have

made a hundred percent loss and would not record it.

Our implied probability of success creates a new testable implication contributing to the analysis

of venture capitalists’ return performance. The literature on venture capital performance has

focused on return-on-investment as a tool to compare across different investments. However, it

is an ex-post measure that suffers from selection bias. As Cochrane (2005) pointed out, we are

likely to see returns of those successful firms. Since then, the literature has emphasized the need

to correct this selection bias to accurately measure investors’ performance. Our measure mitigates

this bias by transforming ex-post returns to ex-ante ones.

8 Conclusion

This article studies the equilibrium implications of future equity financing in a continuous-time

principal-agent setup. The entrepreneur’s career concerns generate a moral hazard tension, which

investors address with a financial contract that promises equity in the future. The optimal contract

admits precise closed-form expressions and guarantees that the entrepreneur develops innovative

technology all the time.

The optimal contract satisfies the main feature of convertible notes: the higher the firm value

leading up to conversion, the fewer equity investors attain. We point that positive pay-performance

sensitivity discourages innovation, in line with Manso (2011)’s central insight, and the entrepreneur

risk exposure increases as firm value deteriorates.

We implement the contract with a convertible note similar to a SAFE and KISS. The convertible

note has no interest payment, no maturity date, and it contains a valuation cap provision that

ensures investors’ future equity cannot be too low, and a time-varying discount provision that

increases with a lower investment. The valuation cap benefit is necessary; if it is set too high,

developing innovative technology all the time is suboptimal. Our model emphasizes the importance

of these two provisions. It would be interesting to investigate if the valuation cap provision is more

prevalent in firms pursuing the innovative technology, and if investors attain a higher discount when

their investments are lower.
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Lastly, we introduce the implied probability of success, an investor-specific performance measure

that can be assessed empirically. We show how to utilize it to estimate investors’ skills and correct

selection bias in realized returns.

Our model generates new testable predictions. Most notably, those introduced by the implied

probability of success. It would be interesting to take the implied probability of success to the data

and contrast its outcomes against other methods to estimate investors’ skills and correct selection

bias in realized returns. Further, our model predicts that future equity and convertible notes are

optimal to finance innovation. It would be interesting to contrast firms with equity seed round

financing with future equity ones. Are future equity ones more innovative? Do firms with future

equity financing reach a breakthrough with higher probability? These and other questions yet to

be answered.

A Proofs

Proof of Proposition 1 (Post-development). Post-development, for any qt ∈ [
¯
q, q̄], the innovative technology

generates the highest value for both the entrepreneur and investors, as our assumption (8) illustrates. Consequently,

for any feasible qt, both the entrepreneur value and investors’ value function remain constant indefinitely. Investors

choose the entrepreneur’s future equity qt to satisfy the promise-keeping condition such that (12) always holds; the

entrepreneur attains qτV
h
0 , and investors the residual (1− qτ )V h0 . This result is a direct consequence of the promise-

keeping condition, which requires that at every point in time, the entrepreneur’s (promised) continuation payoff

exactly matches her expected continuation payoff, as DeMarzo and Fishman (2007) illustrated.

The entrepreneur’s promised continuation payoff coming-in to time t is (Wt− + δt), for some feasible entrepreneur’s

future equity, qt. Therefore, if qt 6=
W
t−+δt

V h0
, then the promise-keeping condition is violated. We verify that qt ∈ [

¯
q, q̄]

in Theorem 1.

Proof of Proposition 2, (Incentive Compatibility). Let us define Get as the entrepreneur lifetime wealth evalu-

ated conditional on information at time t, Get ≡ Et
[∫ T

0
e−rs (qsdX

π
s ) + e−rTLR

]
. By using (13), we write Get such

that

Get =

∫ t

0

e−rsqsdX
π
s + e−rtWt. (37)

By construction, Get is a martingale with respect to the filtration generated by (Z,N) under the probability measure

induced by innovative strategy π, Pπ. Therefore, by the Martingale Representation Theorem,

Get = Ge0 +

∫ t

0

e−rsβsσdZs +

∫ t

0

e−rsδs (dNs − νds) ,
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where we express the Brownian increments as a function of observable performance, dZt =
dXπt −(µ+αNt)dt

σ
. By taking

a derivative of (37) and using the above martingale representation, we obtain (14).

We now show that the contract {{qt : 0 ≤ t ≤ T} , T} is incentive-compatible if and only if βt (µ0 − µ) ≤ δtν−λ.

Consider an arbitrary strategy π̂ and define

Ĝet = Ĝe0 +

∫ t

0

e−rs
(
qsdX

π̂
s + (1− π̂s)λds

)
+ e−rtWt (38)

as the lifetime expected utility evaluated conditional on information at time t when the entrepreneur follows π̂ up to

time t and then switches to π after time t. We find that

ertdĜet = qtdX
π̂
t + (1− π̂t)λdt+ ertd

(
e−rtWt

)
= qtdX

π̂
t + (1− π̂t)λdt− qtdX π̂

t + βt
(
dX π̂

t − µdt
)

+ δt
(
dN π̂

t − νdt
)

= qt
(
dX π̂

t − dX π̂
t

)
+
(
βt
(
µπ̂ − µ

)
+ (λ− δtν) (1− π̂t)

)
dt+ βt

(
dX π̂

t − µπ̂dt
)

+ δt
(
dN π̂

t − νπ̂tdt
)

=
(
βt (µ0 − µ) + λ− δtν

)
(1− π̂t) dt+ βt

(
dX π̂

t − µπ̂dt
)

+ δt
(
dN π̂

t − νπ̂tdt
)
,

where µπ̂ = [πt (µ+ αNt) + (1− πt)µ0] and Nt = 0 during the development phase, by taking a derivative and

plugging (14). We obtain the first equality by taking the derivative of (38) and multiplying by ert; the second by

applying Itô’s Lemma for e−rtWt and plugging (14); the third by changing measures to identify the martingale part

and the drift part; and the fourth by direct manipulation. The drift is non-positive if and only if

βt (µ0 − µ) + λ− δtν ≤ 0,

which implies that Ĝet is a supermartingale under any feasible strategy and a martingale only under the recommended

innovative strategy of πt = 1. If the strategy πt does not satisfy (15) on a set with positive measure, during [0, T ),

let us choose π̂t = 0 when (15) is not satisfied and π̂t = πt = 1 otherwise. Then, {πt = 1; 0 ≤ t < T} is suboptimal.

We verify the restriction (9) in Theorem 1.

Proof of Theorem 1 (Optimal Contract). First, from (5) and (6), we find that νV h0 +µ = V h1 (ν + r) and rV h0 −

µ = α. By plugging these simplifications back to (18), our second-order differential equation becomes

V1(Wt−) =
(
V h0 −Wt−

)(V h1
V h0

)
− 1

2

(µ0 − µ)2

σ2

(
V h1 (ν + r)

V h1 (ν + r)− µ0

)2(
1

r + ν

)
(1 + V ′1 (Wt−))

2

V ′′1 (Wt−)

−
(
1 + V ′1 (Wt−)

)(V h1
V h0

)(
λV h0 +Wt− (µ0 − µ)

V h1 (ν + r)− µ0

)
+ V ′1 (Wt−)Wt−

(
α

V h0

)(
1

r + ν

)
. (39)

Next, we verify that our suggested solution (19) satisfies the second-order differential equation (39). Toward that

goal, let us define k1 ≡ k̃1(a)
1
a and b ≡ q̄V h1 a. By using these definitions, our suggested solution then becomes

V (Wt−) = V h1 −Wt− − k̃1 (b− aWt−)
1
a , RL ≤Wt− ≤ q̄V

h
1 . (40)

We proceed by characterizing the constants a, b/a and k1. We first show that they match our characterization for
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V1, δt, βt, and qt. We then show that these characterizations satisfy our conjectures: (i) V ′′(Wt−) ≤ 0, (ii) βt ≤ qt,

(iii)
¯
q ≤ qt ≤ q̄, for any Wt− ∈ [RL, q̄V h1 ], with strict inequalities everywhere except for Wt− = q̄V h1 . Plugging

the derivatives of the value function (40) back to the second-order differential equation (39), we obtain the following

equation:

(b− aW )

[
−1− 1

2

(µ0 − µ
σ

)2
(

V h1 (ν + r)

V h1 (ν + r)− µ0

)2
1

r + ν

1

1− a

]

=

(
V h1
V h0

)(
−λV

h
0 +Wt− (µ0 − µ)

V h1 (ν + r)− µ0
+

αW

V h1 (r + ν)

)
. (41)

This last equation has to hold for any W , which leads to two equations—one for the free terms and one for the W

term

b

[
−1− 1

2

(µ0 − µ
σ

)2
(

V h1 (ν + r)

V h1 (ν + r)− µ0

)2
1

r + ν

1

1− a

]
=

(
V h1
V h0

)(
− λV h0
V h1 (ν + r)− µ0

)
, (42)

− a

[
−1− 1

2

(µ0 − µ
σ

)2
(

V h1 (ν + r)

V h1 (ν + r)− µ0

)2
1

r + ν

1

1− a

]
=

(
V h1
V h0

)(
− (µ0 − µ)

V h1 (ν + r)− µ0
+

α

V h1 (r + ν)

)
, (43)

respectively. Dividing b by −a, we obtain

− b
a

=

(
− λV h0
V h1 (ν+r)−µ0

)
(
− (µ0−µ)

V h1 (ν+r)−µ0
+ α

V h1 (r+ν)

) =
−λV h0

µ+ α− µ0

V h1

(
V h1 + α

r+ν

) = − λ

r − µ0

V h1

= −q̄V h1 . (44)

We obtain the first equality by dividing (42) by (43), the second by simplifying the fraction, the third by observing

that V h1 + α
r+ν

= V h0 , and the fourth by observing that rV h1 − µ0 = λ
q̄

. Therefore, we conclude that b
a

= q̄V h1 . Next,

(43) is quadratic in a. Our desired solution is the lower solution of this quadratic; that is, a satisfies

a =
1 +X + Y −

√
(1 +X + Y )2 − 4Y

2
, (45)

where

X =
1

2

(µ0 − µ
σ

)2
(

V h1 (ν + r)

V h1 (ν + r)− µ0

)2
1

r + ν
> 0, (46)

Y =

(
V h1
V h0

)(
− (µ0 − µ)

V h1 (ν + r)− µ0
+

α

V h1 (r + ν)

)
=

rV h1 − µ0

(r + ν)V h1 − µ0
=

λ

q̄V h1 ν + λ
> 0. (47)

The second-to-last equality in Y is obtained by simplifying the fraction and observing that V h1 + α
r+ν

= V h0 , and the

last by observing that q̄
(
rV h1 − µ0

)
= λ. Furthermore, X > 0 and Y > 0 because investors always prefer to develop

innovation over utilizing off-the-shelf (6). We now show that a, given in (45), always exists and satisfies 0 < a < 1

for any set of parameters. It is straight forward to verify that the parameter a exists, it is strictly less than one, and

strictly bigger than zero because X,Y > 0. Therefore, our suggested solution in (19) solves the differential equation

in (18) for any given k1.

To finish the value function’s characterization, we pin down k1 using the value-matching condition as follows.
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Whenever Wt− ≤ RL, the entrepreneur is better off exercising her outside option RL. Therefore, the value-matching

condition is V1(RL) = (1−R)L. When we plug this relation to (40), we obtain

k1 =
(V h1 − L)(
q̄V h1 −RL

) 1
a

. (48)

Observe that because terminating the contract is inefficient (V h1 > L), the coefficient is always positive, k1 > 0. We

have completed the characterization of the value function.

Further, by plugging our suggested solution to the first-order condition for δt, (17), we find that

δt = − b− aWt−

1− a
(µ0 − µ)2

σ2

V h0
(
V h0 ν + µ

)(
V h0 ν + µ− µ0

)2 +
λV h0 +Wt− (µ0 − µ)(

V h0 ν + µ− µ0

) , (49)

βt =
δtν − λ
µ0 − µ

= − b− aWt−

1− a
(µ0 − µ)2

σ2

V h0
(
V h0 ν + µ

)(
V h0 ν + µ− µ0

)2 ( ν

µ0 − µ

)
+

νWt− + λ(
V h0 ν + µ− µ0

) , (50)

qt =
δt +Wt−

V h0
= − b− aWt−

1− a
(µ0 − µ)2

σ2

V h0
(
V h0 ν + µ

)(
V h0 ν + µ− µ0

)2 ( 1

V h0

)
+

νWt− + λ(
V h0 ν + µ− µ0

) . (51)

To obtain the representation for qt, (22), we first define

φq ≡
2X

Y

a

1− a , (52)

where X,Y , and a are given in (46),(47), and (45), respectively. Using simple algebra, we then rewrite

qt = −
(
q̄V h1 −Wt−

) a

1− a
2X

Y

1

V h1

λ

νq̄V h1 + λ
+

νq̄Wt−

νq̄V h1 + λ
+

q̄λ

νq̄V h1 + λ

=
1

νq̄V h1 + λ

(
λq̄(1− φq) +Wt−

φqλ+ φqνq̄V
h
1

V h1
+Wt− (−φqνq̄ + νq̄)

)
=

1

νq̄V h1 + λ

(
λq̄(1− φq) + νq̄W (1− φq) +

Wφq
V h1

(
νq̄V h1 + λ

))
,

which leads to our desired representation (22). We obtain the first equality from the representation of qt above, (51),

the second by plugging the definition of φq, and the third by adding and subtracting νq̄W . Similarly, we obtain βt.

Let us define

φβ ≡
2X

Y

a

1− a
νV h0
µ0 − µ

. (53)

We then rewrite βt as follows:

βt = −
(
q̄V h1 −Wt−

) a

1− a
2X

Y

V h0
V h1

λ

νq̄V h1 + λ

ν

µ0 − µ
+

νq̄Wt−

νq̄V h1 + λ
+

q̄λ

νq̄V h1 + λ

=
1

νq̄V h1 + λ

(
λq̄(1− φβ) +Wt−

φβλ+ φβνq̄V
h
1

V h1
+Wt− (−φβ q̄ν + q̄ν)

)
=

1

νq̄V h1 + λ

(
λq̄(1− φβ) + νq̄Wt−(1− φβ) +

Wt−φβ
V h1

(
νq̄V h1 + λ

))
.

We obtain the representation for δt by rewriting it in terms of qt.
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We now turn to the second part of the proof and show that our conjectures are satisfied. First, the second

derivative (40) immediately verifies strict concavity as long as Wt− < q̄V h1 :

V ′′(Wt−) = − (1− a) k̃1 (b− aWt−)
1
a
−2 < 0

because k1 > 0 and a < 1. Second, by comparing βt and qt above, we find that βt < qt if and only if

b− aW
1− a

(µ0 − µ)2

σ2

V h0
(
V h0 ν + µ

)(
V h0 ν + µ− µ0

)2 ( 1

V h0
− ν

µ0 − µ

)
< 0,

which holds for Wt− < q̄V h1 because the left-hand side is strictly negative. To see this, observe that V h0 ν + µ =

(r + ν)V h1 > (r)V h1 > µ0. Therefore, the incentive compatibility condition always binds.

Lastly, we verify our conjecture that, indeed,
¯
q ≤ qt ≤ q̄. The lowest wealth that satisfies the entrepreneur’s

future equity constraint (qt =
¯
q), given in (51), is

¯
W = ¯

q
(
V h0 ν + µ

)
+ q̄V h1

a
1−a

(µ0−µ)2

σ2

(V h0 ν+µ)
(V h0 ν+µ−µ0)

− λ

ν + a
1−a

(µ0−µ)2

σ2

(V h0 ν+µ)
(V h0 ν+µ−µ0)

≤ RL, (54)

which is below the outside option. Similarly, the highest wealth that satisfies the entrepreneur’s future equity

constraint (qt = q̄) is

W̄ =
q̄V h1

a
1−a

(µ0−µ)2

σ2

(V h0 ν+µ)
(V h0 ν+µ−µ0)

+ q̄V h1 ν

ν + a
1−a

(µ0−µ)2

σ2

(V h0 ν+µ)
(V h0 ν+µ−µ0)

= q̄V h1 . (55)

It is easy to verify from (51) that ∂q
∂W

> 0. Both (54) and (55) imply that our future equity conjecture (9) is satisfied

over the domain [RL, q̄V h1 ]. To conclude, let us prove that V1 represents investors’ value function under the contract

outlined in this proposition. The proof proceeds in a standard way. Let

Gt ≡
∫ t

0

e−rs (1− qs) dXπ
s + e−rtV1 (Wt) , (56)

for time t ≤ T ∧n. Under an arbitrary incentive-compatible contract, the entrepreneur wealth (Wt) evolves according

to (14). By applying Itô’s Lemma, we find

ertdGt =(
(1− qt)µ+ V ′1 (Wt−)

(
rWt− − qtµ− δtν

)
+

1

2
σ2V ′′1 (Wt−) (βt − qt)2 + ν(1− qt)V h0 − (r + ν)V1 (Wt−)

)
dt

+
(

(1− qt) + V ′1 (Wt−) (βt − qt)
)
σdZt +

(
(1− qt)V h0 − V1(Wt−)

)
(dNt − νdt) . (57)

The process Gt is a supermartingale because the dt term is non-positive (16). It becomes a martingale if and

only if we set δt, βt, and qt according to (20),(21), and (22), respectively. Taking the expectation of (56) and utilizing
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the supermartingale property, we find

V1 (W0) = G0 ≥ E [GT∧n] = E

[∫ T∧n

0

e−rs (1− qs) dXπ
s + e−rT∧nV1 (WT∧n)

]
= E

[∫ T∧n

0

e−rs (1− qs) dXπ
s + e−rT∧n (1−R)L

]
+ E

[
e−rT∧n (V1 (WT∧n)− (1−R)L)

]
. (58)

Taking the limit n→∞, and using the fact that V1 (WT ) ≤ V h0 , the bounded convergence theorem implies that

V1 (W0) ≥ E
[∫ T

0

e−rs (1− qs) dXπ
s + e−rT (1−R)L

]
. (59)

Under the optimal contract, Gt becomes a martingale until time T because both the dZt and dNt− νdt terms in (57)

are bounded.

Proof of Proposition 4 (Pay-Performance Sensitivity). This result can be easily verified by subtracting qt from

βt, (51) and (50), respectively.

Proof of Proposition 5 (Risk-Exposure). Risk-taking implies that ∂(qt−βt)
∂W

< 0. This result can be easily verified

by subtracting βt from qt, (50) and (51), respectively.

Proof of Proposition 3 (Future Equity). The statement investors’ future equity decreases with the entrepreneur

value implies that ∂(1−qt)
∂W

t−
< 0. This result can be easily verified from (51).

Proof of Proposition 6 (Risk Aversion). Absolute risk aversion is defined as

RA(W ) ≡ −V
′′
1 (W )

V
′
1 (W )

, (60)

where the number of primes signifies the number of derivatives taken. Thus, RA′(W ) < 0 if and only if

1

(V
′
1 )2

(
−V

′′′
1 V

′
1 + V

′′
1 V

′′
1

)
< 0.

By plugging the derivatives of V1, (40), this inequality becomes

1

(V
′
1 )2

k1
1

a

(
1

a
− 1

)(
q̄V h1 −W

) 1
a
−3
[(

1

a
− 2

)
+ k1

1

a

(
q̄V h1 −W

) 1
a
−1
]
< 0.

The function multiplying the square brackets is positive and well defined for W < q̄V h1 and W 6= arg max(V1(W )).

Thus, plugging k1, risk aversion increases if and only if

(
V h1 − L
q̄V h1 −RL

)(
q̄V h1 −W
q̄V h1 −RL

) 1
a
−1

≥ 2a− 1. (61)

First, observe this inequality is always satisfied when a ≤ 0.5, so RA(W ) always increases. Second, for any a > 0.5,

we apply the fixed point theorem. The right-hand side is strictly positive and below one. In contrast, the left-hand

39



side starts strictly above 1, decreases with W , and becomes zero as W approaches q̄V h1 . It starts above one because it

is inefficient to terminate the contract, (1− q̄)V h1 > (1−R)L. There exists a fixed point W̃ such that (61) holds with

equality, and when W ≥ W̃ , risk aversion decreases, (61) is not satisfied. In contrast, when W ≤ W̃ , risk aversion

increases, (61) is satisfied.

Observe that (1− qt) is inversely and linearly related to Wt− , (51). Thus, we can write W (1− qt) as a function

of 1− qt and derive RA(1− qt). Lastly, we find 1− Q̃ by plugging W̃ in (51),

1− Q̃ = 1 +
b− aW̃
1− a

(µ0 − µ)2

σ2

V h0
(
V h0 ν + µ

)(
V h0 ν + µ− µ0

)2 ( 1

V h0

)
− νW̃ + λ(

V h0 ν + µ− µ0

) . (62)

Proof of Proposition 7 (Optimality). There are no agency frictions during the post-development phase as both

the entrepreneur and investors prefer the innovative strategy. Formally, when innovation becomes fully developed,

t = τ , investors’ expected value equals their share of total value (1− qτ )V h0 . If the entrepreneur utilizes off-the-shelf

instead, investors’ expected value is (1− qτ ) µ0
r

. Since V h0 > µ0
r

, (3), the innovative strategy is optimal post-

development.

During the development phase, t < τ , we follow the technique of DeMarzo and Sannikov (2006) and show the

optimality of developing innovation. If the entrepreneur utilizes off-the-shelf, her wealth is not sensitive to innovation

(πν = 0), and due to concavity of the value function, investors set βt = qt. To maximize their share, investors set

qt = 0 and the entrepreneur’s wealth evolves according to

dWt = rWt−dt− λdt. (63)

The new strategy leads to a lower value than the original contract if rV1(W ) ≥ µ0 + V ′1 (W ) (rW − λ) for all W ,

which holds if

µ0

r
≤ min

W

{
V1(W ) + V ′1 (W )

(
λ

r
−W

)}
. (64)

Plugging V1 and its derivative, given in Theorem 1, we find that the right-hand side attains the global minimum at

λ
r

. Thus, (64) is satisfied if and only if

µ0

r
≤ V1

(
λ

r

)
.

By plugging V1 and using (7), the inequality becomes

(1− q̄)
(
V h1 −

µ0

r

)
≥
(
V h1 − L

)( q̄ µ0
r

q̄V h1 −RL

) 1
a

. (65)

It is easy to verify that the left-hand side decreases with q̄, starts strictly positive, and ends at 0. The right-hand side

decreases with q̄ when RL > 0, and strictly bigger than 0 because the denominator is strictly positive, q̄V h1 > RL.

Thus, when q̄ = 1, the left-hand side is strictly lower than the right-hand side, implying that it must satisfy Q < 1 if
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a fixed point exists. We guarantee the existence of the fixed point by assuming

V h1 ≥ 2µ0
r
, when L = 0,

V h1 ≥ 2−R
1−R

µ0
r
, µ0

r
> L when L > 0.

(66)

For L = 0, we find

V h1 −
µ0

r
≥ µ0

r
≥
(
V h1

)( µ0
r

V h1

) 1
a

,

where the left inequality holds due to (66), and the right due to µ0
r
< V h1 and 0 < a < 1. For L > 0, we look at

q̄ = R and find

(1−R)
(
V h1 −

µ0

r

)
≥ µ0

r
=
(
V h1 − L

)( µ0
r

V h1 − L

)
>
(
V h1 − L

)( µ0
r

V h1 − L

) 1
a

=
(
V h1 − L

)( q̄ µ0
r

q̄V h1 −RL

) 1
a

,

where the left and right inequalities hold because of (66). There exists a fixed point 0 < Q < 1, which solves (65)

with equality.

Proof of Proposition 8 (Compensation). The salary is always positive because

(r + ν)V h1 > (r)V h1 > µ0 > µ, qt ≥ 0.

The elasticity (32) is given by

∂q

∂β
=

∂q

∂W

∂W

∂β
=

a
1−a

(µ0−µ)2

σ2

V h0 (V h0 ν+µ)
(V h0 ν+µ−µ0)2

(
1

V h0

)
+ ν

(V h0 ν+µ−µ0)

a
1−a

(µ0−µ)2

σ2

V h0 (V h0 ν+µ)
(V h0 ν+µ−µ0)2

(
ν

µ0−µ

)
+ ν

(V h0 ν+µ−µ0)

> 0,

which is strictly positive because ∂q
∂W

and ∂β
∂W

are strictly positive. Plugging φq leads to our characterization (32).

Suppose Kt = Wt, the bank account balance is higher than the entrepreneur wealth after positive shock (Kt+dKt ≥

Wt + dWt), while it is lower than the entrepreneur wealth after negative shock (Kt + dKt ≤ Wt + dWt). Negative

shock decreases the bank account if and only if βt > 0, and positive shock if and only if βt < 0. The biggest negative

shock that leads the entrepreneur wealth to the upper bound q̄V h1 , and the biggest positive shock that leads the

entrepreneur wealth to the lower bound RL are bounded. Thus, the biggest drop in the bank account must also be

bounded.

Proof of Proposition 9 (Implied Probability of Success). This result is a direct consequence of the law of iter-
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ated expectation as follows:

V1(W ) +W = Eπ
[∫ T

0

e−rs
{
dXπ

s

}
+ e−rTL

]
= Eπ

[
Eπ
[∫ T

0

e−rs
{
dXπ

s

}
+ e−rTL | 1τ≥T

]
1τ≥T

]
+ Eπ

[
Eπ
[∫ T

0

e−rs
{
dXπ

s

}
+ e−rTL | 1τ<T

]
1τ<T

]
. (67)

The time τ is exponentially distributed over (0,∞) and is unpredictable when investors choose T (T is (Xπ, N)-

measurable). In (67), in the first conditional expectation, to guarantee that 1τ≥T holds almost surely, T must be

set equal to zero. By contradiction, for a given T > 0, there is a positive measure set such that 1τ≥T is violated.

Similarly, in the second conditional expectation, to guarantee that 1τ≤T holds almost surely, T must be set equal to

∞. By contradiction, for a given T <∞, there is a positive measure set such that 1τ<T is violated. Plugging these

two results back into (67), we obtain

V1(W ) +W = Eπ [L1τ>T ] + Eπ
[
V h1 1τ≤T

]
= LPr [τ > T ] + V h1 Pr [τ ≤ T ] , (68)

and by plugging V1 from Theorem 1, we obtain our desired result (33).

We verify that Pr [τ ≤ T ] is between zero and one. The lower bound on W , W ≥ RL, immediately implies that

0 ≤ Pr [τ ≤ T ]. The upper bound on W , W ≤ q̄V h1 , implies that 1 ≥ Pr [τ ≤ T ], and because ∂ Pr[τ≤T ]
∂W0

> 0, these

are the minimum and maximum values. Lastly, Pr [τ ≤ T ] admits a one-to-one map because it is a continuous and

increasing function of W . Verifying the derivatives in (34) is straightforward.
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